A Catalytic, Bronsted Base Strategy for the Intermolecular Allylic C-H Amination

Sean A. Reed, Anthony R. Mazzotti, and M. Christina White. J. Am. Chem. Soc. 2009,

Early View

Allylic C-H Amination for the Preparation of syn-1,3-Amino Alcohol Motifs

Grant T. Rice and M. Christina White. J. Am. Chem. Soc. 2009, Early View

Eric E. Buck Current Literature August 15, 2009

Sulfoxide-Promoted C-H activation

		%	yield (GC), 48	h	
entry	conditions	L	В	va	mk	[L:B]
1	АсОН	3	5	17	14	1:2
2	DMSO: AcOH (1:1)	40	2	3	6	20:1
3	1 (10 mol %) DCM: AcOH (1:1)	8	66	<1	<1	1:8

Change of product distribution when DMSO is present

No link observed between solvent polarity and C-H oxidation

Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126 (5), 1346 - 1347

_

Serial Ligand Catalysis

$R = C_6 H$	$= \frac{\text{sulfor}}{\text{Pd(O)}}$	xide (1 Ac) ₂ (1 dant (2 equiv),	0 mol %) 10 mol %) 2 equiv.) dioxane, 43 °C	R B	c K	OAc L
entry	sulfoxide		AcOH (equiv.)	oxidant	% yield GC 48h, B	[B :L]
1	none		52	BQ	3%	3:1
2	$b_{ph} \sim S \sim S \sim p_{h}$		52	BQ	73%	11:1
3	O II	a.	52	BQ	66%	12:1
	Ph ^{-S}	b.	4	BQ	64%	31:1
	0	f.	4	BQ(Me) ₂	15%	21:1
4	Ph-S-3		52	BQ	3%	2:1
5	Ph 4		52	BQ	4%	3:1

BQ acts as a functionalization-promoting ligand.

The observed regioselectivity is the result an electronically dissymmetric π -allyl intermediate.

Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127 (19), 6970 - 6971

Macrolactonization and allylic C-H oxidation/Vinylic C-H arylation

CO_2H $\left(\begin{array}{c}H\\H\end{array}\right)$	$O \qquad O \qquad$,	Delcamp, J. H.;	White, M. C. J. Am.
	BQ (2 equiv.), air, DCM, 45 °C, C = 10 mM	\bigcirc		7000	0 _ 0
entry	macrolactone product	ring size	isolated yield (%)		Ph S S Ph $Pd(OAc)_2$
1	0	14	61	R	I(10 mol %)
2		15	52		$R'CO_2H$ (2 - 4 equiv.)
3		16	60		BQ (2 equiv.), air,
4		17	53		dioxane, 24- 48h, 45 °C
				entry	product
				1	OAc
5		16	52	2	TBDPSO
	N H			4	0
	0				ОВ
7		14	60	11	
	0				
8		14	54	13	Me

L. J. Am. Chem. Soc. 2006, 128 (28), 9032

Br

NHBoc

ArB(OH)₂

(1.5 equiv.)

4 - 7h. 45 °C

°CO₂Me

Br

OC(O)R'

>20:1 E:Z

>20:1 internal: terminal

isolated

yield (%)

X = H, 74% OMe, 52%

F, 74%

62%

75%

Ar

Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am. Chem. Soc. 2006, 128 (28), 9032 - 9033

Allyic C-H Amination and Linear Allylic C-H Amination

R [^]	O NHTs	F quinc THF	O Ph-S • S-Ph Pd(OAc) ₂ 1 (10 mol %) one (1.05 or 2 equiv.), (0.66M), 45 °C, 72 h	*	
	entry	R	quinone (equiv.)	isolated yield (%)	dr (anti:syn)
	1	i-Pr	BQ (2) ^a	37	7:1
	2	i-Pr	BQ (2) ^{a,b}	3	
	3	i-Pr	BQ (2)	50	7:1
	4	i-Pr	PhBQ (2)	66	6:1
	5	i-Pr	PhBQ (1.05)	72	6:1
	7	- Solo	PhBQ (1.05)	8	18:1
	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PhBQ (1.05)	86	1.6:1

 a Reaction run at 0.33 M. b Reaction run using 10 mol % Pd(OAc)_2

Weak lewis basicity of nucleophile prevents interference during C-H activation step

Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129 (23), 7274 - 7276

Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130 (11), 3316 - 3318

Pd(II)L _n	Cr(III)L _n	isolated yield (%)	L:B	E:Z
1				
	(salen)Cr(III)Cl 2			
1	2	43	>100:1	65:1
$Pd(OAc)_2$	2	17		
1	(TPP)Cr(III)Cl	25	>100:1	71:1
1	2	53	>100:1	57:1
1	(salen)Mn(III)Cl	44	>100:1	78:1
	Pd(II)L _n 1 1 Pd(OAc) ₂ 1 1 1 1 1 1 1 1 1	Pd(II)Ln Cr(III)Ln 1 1 (salen)Cr(III)Cl 2 1 2 Pd(OAc)2 2 1 (TPP)Cr(III)Cl 1 2 1 (Salen)Mn(III)Cl	Pd(II)Ln Cr(III)Ln isolated yield (%) 1 (salen)Cr(III)Cl 2 1 2 43 Pd(OAc)2 2 17 1 (TPP)Cr(III)Cl 25 1 2 53 1 (salen)Mn(III)Cl 44	Pd(II)Ln Cr(III)Ln isolated yield (%) L:B 1 (salen)Cr(III)Cl 2 1 2 43 >100:1 Pd(OAc)2 2 17 1 (TPP)Cr(III)Cl 25 >100:1 1 2 53 >100:1 1 (salen)Mn(III)Cl 44 >100:1

^a THF. ^b TBME.

Bronsted Base Strategy for intermolecular Allylic C-H Amination

Lewis acid activation incompatible with lewis basic functionality

Potential Isomerization of activated terminal olefins

Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009, ASAP

n-C ₇ H ₁₅	H H O Ph-S S Pd(OAc) ₂ 1(10 mol % additive (6 mo MeOC(O)NHTs (2 BQ (2 equiv.), TBME 45 °C, 72 h	O Ph) 1%) equiv.) E (0.66M)	n-C ₇ H ₁₅	Ts NOMe O
entry	additive	yield(%)	L:B	E:Z
1	none	1		
2	(S,S)-Cr(salen)Cl 2	50	11:1	19:1
3	pyridine	9	12:1	14:1
4	2,6-di-tert-butylpyridine			
5	N-isopropylamine			
6	N,N-diisopropylamine	66	12:1	15:1
7	TEA	60	14:1	15:1
8	DIPEA	66	11:1	17:1
9	MeOC(O)NTs-DIPEAH	9	6:1	10:1

Strongly basic but stericly encumbered amines gave highest observed yield

One or more steps in the catalytic cycle are incompatible with high concentrations of a coordinating anionic nucleophile

Effect of DIPEA and Comparison Between additives

Optimal mol% of DIPEA between 6 - 10 mol%

Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009, ASAP

Proposed mechanism and Quinone sterics

Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009, ASAP

Covell, D. J.; White, M. C. Angew. Chwm., Int. Ed. 2008, 4, 6448

entry	R	time	isolated yield(%)	dr	_
1	<i>p</i> -Tol	72 h	15	5.1:1	
2	<i>p</i> -ClPh	24 h	38	3.7:1	
3	<i>p</i> -NO ₂ Ph	24 h	67	4.4:1	
4	o-NO ₂ Ph	24 h	63	2.6:1	

Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, ASAP

Unlike the allylic C-H amination system, the branching substrate has little effect on diastereoselectivity.

Addivtives include *p*-nitrobenzoic acid and O₂ to promote palladium (0) oxidation.

entry	R'	isolated yield(%)	dr	isolated Syn
5	iPropyl	80	6.0:1	65
6	Ethyl	87	4.3:1	67
7	<i>t</i> Butyl	84	6.3:1	68

Reaction scope and Origin of Diastereoselectivity

Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, ASAP

Takahata,H.; Kubota, M.; Ikota, N. J. Org. Chem. **1999**, *64*, 8594 Passarella, D.; Barilli, A.; Belinghieri, F.; Fassi, P.; Riva, S.; Sacchetti, A.; Silvani, A.; Danieli, B. Tetrahedron: Asymmetry **2005**, 16, 2225

1,2-Amination rate increase and conclusion

Conclusion

Over the last 5 years the White group has developed mild C-H oxidation and amination reactions using the electrophilic Pd(II) catalyst, **1**.

They have developed methods for the construction of syn-1,2- and syn-1,3-amino alcohols.

Used DIPEA to improve functional group tolerance and a more electrophilic pro-nucleophile to increase reaction rates

This methodology should be employed in a more complex setting.

Other ways to trap the intermediate alkyl-palladium species

Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, ASAP